

THE BENEFITS OF PLASMA TREATMENT IN ELECTRONICS MANUFACTURING

Anderson Arvelo

Business Manager Anda Technologies México, SA DE CV.

> Brian Stumm Sales Support Manager Anda Technologies USA, Inc.

Objective

To educate the audience on:

THE BENEFITS OF PLASMA TREATMENT IN ELECTRONICS MANUFACTURING

Summary

Plasma treatment is a fast and environmentally friendly process for fine cleaning and surface modification in preparation for other applications.

Plasma Treatment offers the following benefits:

- Surface Modification: Surface Energy is increased, surface tension is decreased, wettability and adhesion are improved.
- **Micro-Sandblasting**: Cleans and etches surface by ion bombardment.
- **Chemical Reaction**: Chemical reaction of the ionized gas with the surface.
- **UV Radiation**: UV radiation breaks down long-chain carbon compounds.

Introduction: What is Plasma?

Plasma is the forth state of matter (substance that occupies physical space):

- 1. Solid
- 2. Liquid
- 3. Gas
- 4. Plasma

Introduction: What is Plasma?

Solid + Enough Energy = Liquid Liquid + Enough Energy = Gas Gas + Enough Energy = Plasma

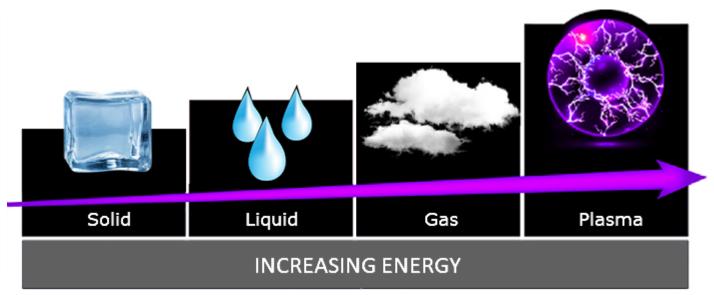


Figure 1: The 4 states of matter

Introduction: What is Plasma Treatment

- 1. Plasma treatment is achieved by combining a gas with an increased amount of energy.
- 2. Gas becomes electronically charged.
- 3. Electronically charged gas is directed at the substrate.

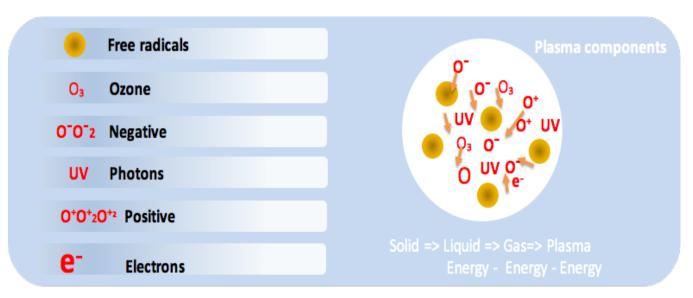


Figure 2: The composition of plasma

Introduction: Vacuum Plasma Treatment

Vacuum Plasma Treatment requires a sealed, vacuum chamber which typically means an off-line or batch process. Figure 6 represents the 400mm X 400mm X 400mm vacuum chamber used in this study.

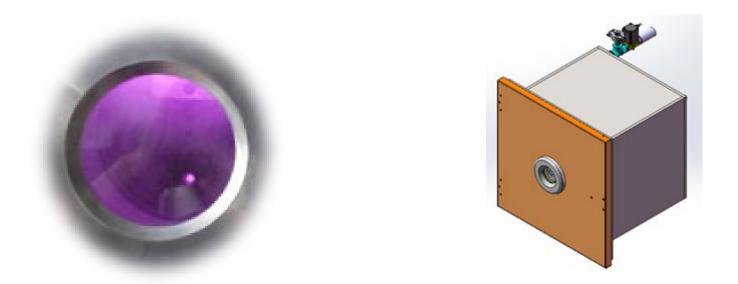
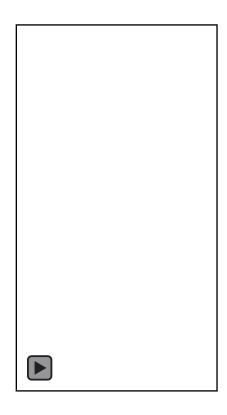


Figure 6: Vacuum Plasma Chamber, 0.064 Cubic Meters

Introduction: Atmospheric Plasma Treatment

Atmospheric Plasma is created as compressed air or gas passes through a nozzle and by a high frequency, high voltage, electrical arc. The resulting plasma is then emitted from the tip of the nozzle with an approximate effective range of 15 millimeters onto the surface of the substrate.



Introduction: Atmospheric Plasma Treatment

- 1. Plasma treatment is achieved by combining a gas with an increased amount of energy.
- 2. Gas becomes electronically charged.
- 3. Electronically charged gas is directed at the substrate.

Introduction: Why Use Plasma Treatment?

- Improves adhesion
- Improves wettability
- Cleans surface
- Etches surface
- Increase surface energy

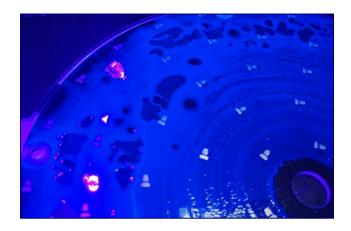


Figure 3: Dewetting

Introduction: Why use Plasma Treatment?

Industries where plasma treatment is useful:

Automotive

Aerospace

Medical

Electronics

For this study, testing was conducted using both vacuum plasma treatment and atmospheric plasma treatment. Contact Angle Measurement was used to evaluate surface tension prior to treatment as well as after treatment.

- Analyze Surface Energy of Substrates prior to treatment
- Perform Vacuum Plasma Treatment to test group A
- Perform Atmospheric Plasma Treatment to test group B
- Analyze Surface Energy of Substrates post-treatment
- Record Results

Using an Optical Tensiometer or Contact Angle Goniometer (Figure 4), a droplet of water is placed on the test substrate, an image at high magnification is captured and a sophisticated software evaluates the image using the theoretical Young-Laplace equation to the liquid drop profile. The angle of contact between the water droplet and substrate can then be calculated.

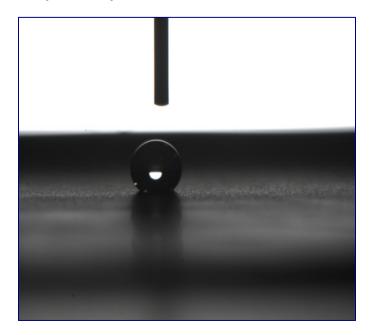


Figure 4: Optical Tensiometer

The contact angle is the angle, conventionally measured through the liquid, where a liquid–vapor interface meets a solid surface. It quantifies the wettability of a solid surface by a liquid via the Young-Laplace equation [4].

A high contact angle indicates the substrate is hydrophobic while a low contact angle indicates the substrate is hydrophiling. The images found in figure 5 represent a random sample. Initial testing indicates contact angle greater than 100 degrees (left). Following atmospheric plasma treatment, contact angle decreased to less than 10 degrees (right).

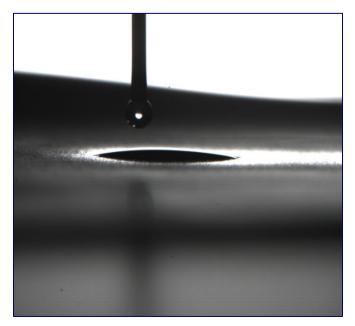


Figure 5: Contact Angle Images

A variety of materials were tested for this study. Materials included:

- Silicone Rubber Sheet (50 Shore A)
- Bare Printed Circuit Board (PCB)
- Aluminum (6061 -T651)
- Hard Anodized Aluminum (6061-T651)
- Steatite Ceramic
- Tempered Glass
- Polyimide Flex Circuit Material
- Polyoxymethylene (Acetal Plastic)
- Gold Plating over Copper

Methodology: Vacuum Plasma

Vacuum Plasma Treatment requires a sealed, vacuum chamber which typically means an off-line or batch process. Figure 6 represents the 400mm X 400mm X 400mm vacuum chamber used in this study.

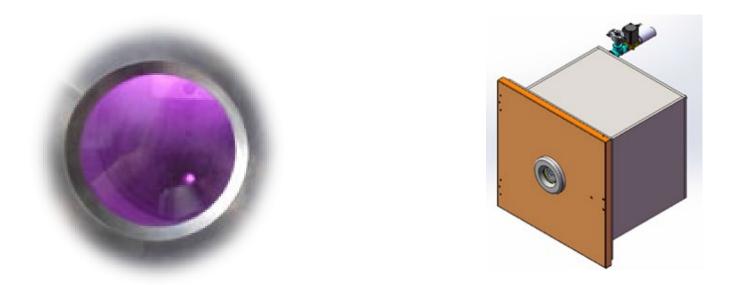


Figure 6: Vacuum Plasma Chamber, 0.064 Cubic Meters

Methodology: Vacuum Plasma Testing

Material	Gas	Treatment	Befo	Before Treatment			After Treatment			
wiaterial	Gas	Time	1	2	3	1	2	3		
Silicone	02: 10ml, Ar: 40ml	30s	119.3	120.6	123.1	5.6	5.2	6.1		
Silicone	N2: 40ml, Ar: 40ml	505	122.6	122.9	124.2	9.1	10.2	9.5		
PCB (FR4)	02: 10ml, Ar: 40ml	30s	74.5	76.1	74.6	9.5	9.6	9.9		
FCB (I K4)	N2: 40ml, Ar: 40ml	505	76.7	72.9	75.3	8.3	8.1	8.5		
		30s	96.1	95.7	99.4	33.2	35.2	34.6		
Aluminum	N2: 10ml Ar: 10ml	60s	95.2	97.2	98.2	20.7	20.2	21.2		
Aluminum	N2: 40ml, Ar: 40ml	180s	93.6	94.1	96.7	12.4	11.6	12.8		
		300s	96.4	95.9	98.7	6.4	6.2	6.7		
Anodized	N2: 40ml, Ar: 40ml	180s	93.6	94.1	96.7	12.4	11.6	12.8		
Aluminum	112. 40111, AL. 40111	300s	96.4	95.9	98.7	6.4	6.2	6.7		
Ceramic	N2: 40ml, Ar: 40ml	30s	36.2	35.4	36.9	13.3	13.8	12.9		
Ceramic		60s	37.1	36.4	35.7	9.1	8.7	8.3		
Glass	N2: 40ml, Ar: 40ml	30s	39.6	39.1	39.9	8.6	7.9	8.2		
Glass		60s	37.2	38.3	38.7	3.5	4.2	4.7		
Polyimide	02: 10ml, Ar: 40ml	30s	67.8	66.4	64.2	8.2	9.2	8.7		
(Kapton)	N2: 40ml, Ar: 40ml	505	64.2	65.2	63.5	11.3	10.6	11.7		
Polyoxymethylene	O2: 10ml, Ar: 40ml	180s	77.1	74.5	76.4	49.3	50.4	50.9		
(Acetal)	N2: 40ml, Ar: 40ml	300s	79.8	77.3	78.4	46.3	47.1	46.8		
Gold Plating	02: 10ml, Ar: 40ml	25s	102.1	102.9	102.3	20.8	21.5	21.1		
Gold Plating	02. 10m, Al. 40m	60s	99.6	101.4	104.7	14.9	14.7	16.1		

Figure 7: Vacuum Plasma Test Results

Methodology: Atmospheric Plasma

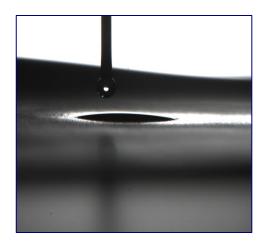
Atmospheric Plasma is created as compressed air or gas passes through a nozzle and by a high frequency, high voltage, electrical arc. The resulting plasma is then emitted from the tip of the nozzle with an approximate effective range of 15 millimeters. The test vehicle used in this study was an enclosed work cell with 3 axis (X, Y, Z) movement. The test vehicle offered two nozzle types: a 50mm rotation nozzle and a 6mm spear tip nozzle. Figure 8 below represents the two plasma nozzles used in this study.

Figure 8: 50mm Rotation Nozzle (left) and 6mm Spear Nozzle (right)

Matarial	Gas	Deuver	Treatment	Before Treatment			After Treatment			
Material		Power	Speed	1	2	3	1	2	3	
	CDA		50mm/sec	133.5	125.9	129.6	11.5	12.6	10.9	
	CDA	500W	100mm/sec	125.6	127.1	126.5	17.6	19.2	19.4	
	N2	30070	50mm/sec	130.1	127.1	128	10.2	10.5	9.8	
Silicone	INZ		100mm/sec	128.3	128.6	128.1	15.6	16.4	15.1	
Sincone	CDA		50mm/sec	126.7	124.7	125.6	8.6	8.4	8.8	
	CDA	1000W	100mm/sec	125.3	124.1	129.5	12.5	12.7	13.1	
	N2	100010	50mm/sec	129.1	126.6	129.8	6.5	5.9	6.4	
	INZ		100mm/sec	125.8	126.6	128.4	10.9	11.4	11.1	
	CDA	500W 100m	50mm/sec	75.3	76.5	74.1	24.6	25.3	23.5	
	CDA		100mm/sec	77.3	79.2	76.3	29.8	28.6	29.7	
	N2		50mm/sec	75.3	78.4	78.9	22.8	22.2	21.6	
	INZ.		100mm/sec	74.1	78.6	79.3	24.1	24.1	25.4	
PCB (FR4)	CDA		50mm/sec	71.9	74.1	76.8	18.5	18.5	17.3	
		1000W	100mm/sec	75.6	74.1	73.5	22.3	24.1	23.2	
	N2		50mm/sec	74.1	76.5	79.8	15.2	16.2	15.7	
			100mm/sec	75.3	72.5	76.4	20.6	20.3	21.5	
	CDA		50mm/sec	94.2	94.1	99.1	29.7	30.1	31.2	
	CDA	500W	100mm/sec	95.3	96.3	94.6	39.6	39.7	38.6	
Aluminum	N2	50070	50mm/sec	96.8	94.1	95.2	26.3	25.8	27.4	
	INZ.		100mm/sec	98.1	95.2	94.6	35.9	36.4	35.6	
	CD A		50mm/sec	98.6	97.3	97.3	25.1	24.5	26.7	
	CDA	1000W	100mm/sec	95.6	94.2	94.2	33.2	32.6	33.1	
	N2	100044	50mm/sec	92.8	96.4	91.5	23.5	24.1	24.6	
	NZ		100mm/sec	94.6	95.2	95.6	30.1	31.5	29.3	

Material	Gas	Power	Treatment	Before Treatment			After Treatment		
Iviaceitai	Gas	Power	Speed	1	2	3	1	2	3
	CDA		50mm/sec	108.3	105.3	107	11.1	12.5	11.2
Anodize	CDA	500W	100mm/sec	106.2	108.4	103.8	17.8	18.3	18.7
Aluminum	N2	20044	50mm/sec	104.9	105.1	101.3	7.6	7.8	8.1
	INZ		100mm/sec	103.8	107.5	103.9	14.9	14.2	15.8
	CDA		50mm/sec	34.8	35.6	36.5	21.3	20.5	20.3
	CDA	500W	100mm/sec	39.6	37.5	35.4	25.3	24.6	25.8
	N2	50070	50mm/sec	37.4	39.5	38.3	19.4	20.1	19.8
Ceramic	INZ		100mm/sec	36.4	38.2	35.2	23.7	24.1	23.6
Cerannic	CDA		50mm/sec	37.5	36.3	38.6	20.6	20.9	21.4
	CDA	1000W	100mm/sec	36.7	34.9	37.1	22.8	22.3	23.1
	N2	1000	50mm/sec 37.8 35.5 39.2	39.2	17.6	18.2	17.9		
			100mm/sec	36.2	38.3	37.3	20.5	20.8	21.8
Glass	CDA		50mm/sec108.3105.310711.1100mm/sec106.2108.4103.817.850mm/sec104.9105.1101.37.6100mm/sec103.8107.5103.914.950mm/sec34.835.636.521.3100mm/sec39.637.535.425.350mm/sec37.439.538.319.4100mm/sec36.438.235.223.750mm/sec37.536.338.620.6100mm/sec36.734.937.122.850mm/sec37.835.539.217.6	6.1	6.9				
	CDA	500W	100mm/sec	38.5	38.6	38.3	8.9	8.5	9.2
	N2	50000	50mm/sec	38.5	39.4	37.9	5.1	5.5	6.1
			100mm/sec	39.4	38.1	39.6	7.6	8.3	7.9

Material	Gas	Power	Treatment	Befo	re Treat	ment_	After Treatment			
iviaterial			Speed	1	2	3	1	2	3	
	CDA		50mm/sec	66.9	69.4	65.2	19.2	18.6	18.2	
	CDA		100mm/sec	62.5	61.2	63.2	23.5	22.6	22.8	
	N2	50000	50mm/sec	61.9	62.5	63.5	17.5	17.4	16.9	
Polyimide (Kapton)	INZ		100mm/sec	63.5	64.3	66.2	21.3	20.9	21.4	
Polyinnue (Kapton)	CDA		50mm/sec	61.2	61.5	63.8	14.2	14.1	14.6	
	CDA	100014/	100mm/sec	62.5	63.8	66.7	19.1	18.5	19.8	
	N2	1000W	50mm/sec	63.5	63.5	65.1	12.3	13.5	12.9	
	INZ		100mm/sec	68.3	65.2	61.5	15.6	16.1	15.7	
	CDA	500W 100r 50n 100r 50n	50mm/sec	78.6	73.5	76.2	55.3	53.6	54.6	
	CDA		100mm/sec	75.4	73.8	74.2	56.1	55.7	56.4	
	N2		50mm/sec	76.1	74.5	72.5	52.1	52.6	53.1	
Polyoxymethylene	INZ		100mm/sec	77.2	74.1	79.5	54.3	54.8	54.1	
(Acetal)	CDA		50mm/sec	78.4	79.4	73.5	52.4	52.9	52.4	
	CDA	- 1000W	100mm/sec	74.2	73.4	79.4	53.8	54.3	54.1	
	N2		50mm/sec	76.8	76.8	74.2	50.1	52.3	50.2	
			100mm/sec	71.5	75.5	73.5	53.4	53.6	52.8	
	CDA		50mm/sec	101.7	102.3	106.7	33.7	32.6	34.1	
	CDA	500W	100mm/sec	103.2	104.6	104.2	40.2	39.7	39.9	
	N2	50000	50mm/sec	109.7	103.3	105.9	31.5	29.6	30.2	
Gold Plating	INZ		100mm/sec	105.8	104.9	106.1	37.3	36.8	36.4	
	654		50mm/sec	106.4	102.7	107.6	29.4	28.4	28.9	
	CDA	1000W	100mm/sec	102.4	106.4	105.8	33.2	33.5	34.1	
	N2	100010	50mm/sec	103.7	103.9	104.4	23.6	24.5	25.1	
	INZ		100mm/sec	105.8	105.4	106.3	30.5	29.7	29.3	


Material	Gas	Power	Treatment	Before Treatment			After Treatment		
Iviaceitai	Gas		Speed	1	2	3	1	2	3
	CDA		50mm/sec	78.6	73.5	76.2	55.3	53.6	54.6
	CDA	500\/	100mm/sec	75.4	73.8	74.2	56.1	55.7	56.4
	N2	50070	50mm/sec	76.1	74.5	72.5	52.1	52.6	53.1
Polyoxymethylene	INZ		100mm/sec	77.2	74.1	79.5	54.3	54.8	54.1
(Acetal)	CDA		50mm/sec	78.4	79.4	73.5	52.4	52.9	52.4
		1000\4/	100mm/sec	74.2	73.4	79.4	53.8	54.3	54.1
	N2	100000	50mm/sec	76.8	76.8	74.2	50.1	52.3	50.2
			100mm/sec	71.5	75.5	73.5	53.4	53.6	52.8
	CDA		50mm/sec	101.7	102.3	106.7	33.7	32.6	34.1
	CDA	E00\4/	100mm/sec	76.1 74.5 72.5 77.2 74.1 79.5 78.4 79.4 73.5 78.4 79.4 73.5 78.4 79.4 73.5 78.4 79.4 73.5 76.8 76.8 74.2 76.8 76.8 74.2 71.5 75.5 73.5 101.7 102.3 106.5 103.2 104.6 104.4 105.8 104.9 106.5 106.4 102.7 107.4 102.4 106.4 105.4 103.7 103.3 105.4 103.7 103.4 105.4 103.7 103.4 105.4	104.2	40.2	39.7	39.9	
	N2	Power 5 500W 5 10 5 1000W 5 </td <td>50mm/sec</td> <td>109.7</td> <td>103.3</td> <td>105.9</td> <td>31.5</td> <td>29.6</td> <td>30.2</td>	50mm/sec	109.7	103.3	105.9	31.5	29.6	30.2
Cold Blating	INZ		100mm/sec	105.8	104.9	106.1	37.3	36.8	36.4
Gold Plating	CD 4		50mm/sec	106.4	102.7	107.6	29.4	28.4	28.9
	CDA	1000\\/	100mm/sec	102.4	106.4	105.8	33.2	33.5	34.1
	NO	100010	50mm/sec	103.7	103.9	104.4	23.6	24.5	25.1
	N2		100mm/sec	105.8	105.4	106.3	30.5	29.7	29.3

Methodology: Test Results Summarized

Vacuum Plasma Treatment and Atmospheric Plasma Treatment both provided similar reduction in contact angle. For Vacuum Plasma, different gas mediums offered better results for different materials. For example, Oxygen & Argon provided the lowest contact angle for plastic materials while Nitrogen and Argon provided the best result for metal substrates. For Atmospheric Plasma, results were similar using Nitrogen compared to Clean Dry Air (CDA).

Conclusion:

Plasma Treatment shows a great deal of promise for various electronics manufacturing applications and processes.

Plasma Treatment Applications:

- Cleaning and Surface Modification prior to Wire or Die Bonding
- Remove oxidation prior to applying solder paste
- Fine Cleaning and Surface Modification prior to Conformal Coating
- Cleaning and Surface Modification prior to edge bonding, BGA underfill and other surface mount adhesive applications
- Prior to potting or encapsulation
- Touch Panel Assembly
- Prior to Painting or Inkjet Printing
- Post SMT Assembly Packaging

Future Work:

Future work will require numerous and extensive tests which involve varying the process parameters such as power level, gas medium, treatment time or speed, etc. With regard to Vacuum Plasma Treatment, this study has illustrated that different gases, or combinations of gases, offer different treatment results. Further studies will target which gas mediums work best for different material types.

Further studies are also required for specific processes as they apply to electronics manufacturing. One particular application that sticks out is plasma treatment prior to conformal coating. At the time of submission of this study, additional studies have already begun on this topic.

Acknowledgements:

The Authors would like to give thanks to:

- Co-Author, Brian Stumm of ANDA Technologies USA, Inc.
- LiYaoYong of Dongguan ANDA Automatic Equipment Co. Ltd,
- Dave Law and Jacky So of ANDA Automation (Hong Kong) Limited,
- Alok Sahu of ANDA Technologies USA, Inc.
- Julio Pacheco and Cesar Cota of ANDA Technologies Mexico

Thanks!

